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Abstract

Imaging flow cytometry systems play a critical role in
the identification and characterization of large populations
of cells or micro-particles. Such systems typically leverage
deep artificial neural networks to classify samples. Here we
show that an event-based camera and neuromorphic pro-
cessor can be used in a flow cytometry setup to solve a bi-
nary particle classification task with less memory usage,
and promising improvements in latency and energy scal-
ing. To reduce the complexity of the spiking neural network,
we combine the event-based camera with a free-space opti-
cal setup which acts as a non-linear high-dimensional fea-
ture map that is computed at the speed of light before the
event-based camera receives the signal. We demonstrate,
for the first time, a spiking neural network running on neu-
romorphic hardware for a fully event-based flow cytome-
try pipeline with 98.45% testing accuracy. Our best arti-
ficial neural network on frames of the same data reaches
only 97.51%, establishing a neuromorphic advantage also
in classification accuracy. We further show that our system
will scale favorably to more complex classification tasks.
We pave the way for real-time classification with through-
put of up to 1,000 samples per second and open up new pos-
sibilities for online and on-chip learning in flow cytometry
applications.

1. Introduction
Flow cytometry is a technology that enables the separa-

tion and analysis of different types of cells based on their
physical and chemical properties, such as size, shape, and
fluorescence. It involves passing cells through a flow cell
in a fluid stream, where they are analyzed using laser-based
detection systems. This technique has become an essential

tool in various fields of biomedical research, including can-
cer diagnosis, immunology, microbiology, genetics, and has
also been applied to the analysis of microparticles [8].

In traditional flow cytometry experiments, labeling cells
with biomarkers can cause chemical interactions that alter
the cells’ characteristics, potentially affecting the accuracy
of the experimental results. Label-free imaging flow cytom-
etry provides an alternative by capturing thousands of im-
ages of cells without the need for labeling. This technique
allows for the analysis of cells in their natural state, provid-
ing a more reliable assessment of cell properties. Label-free
imaging flow cytometry is particularly useful in situations
where cell labeling may not be possible, such as with rare
or primary cells or in vivo samples. It is also valuable in
cases where the effect of biomarker labeling on the cells
must be avoided [6].

Two main challenges with current imaging flow cytome-
ters can be identified [4]. The first challenge relates to mem-
ory as high-speed imaging flow cytometers generate a large
volume of data, requiring a camera with a high frame rate.
The second challenge is related to background noise, which
affects the accuracy of pixel values in the frames captured
by a CMOS camera, and spatial information required for
machine learning models is often corrupted by this noise.
To address this, an event-based camera was utilized which
only respond to variations in intensities of light. Therefore,
by including this type of dynamic sensors, the noise filtering
becomes simpler and can be implemented directly in the vi-
sion sensor or on the neuromorphic processor. Using a neu-
romorphic processor leverages the data sparsity to further
reduce the number of operations required to classify each
particle, thus making the whole setup more energy efficient
and faster than conventional solutions.

The goal of our flow cytometry setup is to accurately and
quickly classify particles based on their physical and chem-



ical properties. With an event-based camera and spiking
neuromorphic chip, it is possible to achieve high accuracy,
low latency and low power consumption, making it an at-
tractive solution for real-time and energy-efficient flow cy-
tometry. Using a coherent laser as a light source further
allows us to leverage the complex nonlinear interaction be-
tween light and the particles, which we use as a nonlinear
high-dimensional feature map. This allows us to build a
high-performing spiking neural network with a simple ar-
chitecture - further reducing energy and latency require-
ments and paving the way for online and on-chip learning.

Contributions We build on previous work [4] for our ex-
perimental setup combining free-space optics with an event-
based camera. We further extend on a previous work-in-
progress [3] which demonstrated the promise of neuromor-
phic flow cytometry through GPU simulations. We im-
prove the spiking neural network and its learning algorithm
to make it more performant and hardware compatible. Fi-
nally, we implement the network on the Loihi 2, a spiking
neuromorphic chip developed by Intel. To the best of our
knowledge, this is the first time that an event-based camera
is used with a spiking neuromorphic chip for a fully event-
based flow cytometry system. Our dataset is open-source
and available online [2] and code for our experiments is
available at https://github.com/stevenabreu7/dvs flow.

2. Background & Related Work
Instead of capturing frames of data at fixed intervals,

event-based cameras only report changes in brightness,
known as events, on a per-pixel basis. When the brightness
of a given pixel changes, the camera generates an event that
includes the pixel’s coordinates, the time of the event, and
the direction of the brightness change. Because events are
generated asynchronously and in response to changes in the
scene, event-based cameras are highly efficient at captur-
ing motion and high-speed motion, while consuming very
little power and bandwidth. This makes them suitable for
applications such as flow cytometry [3,5,6,12], where high
temporal resolution and low latency are essential.

Neuromorphic chips with spiking neural networks are
highly suitable for event-based cameras. Traditional digital
computing architectures process data in a sequential, clock-
driven manner, which is not well-suited for processing the
highly sparse data generated by event-based cameras. In
contrast, neuromorphic chips with spiking neural networks
are designed to process data in a massively parallel, event-
driven manner, which is better suited to the sparse nature
of event-based camera data. By using a spiking neural net-
work, the neuromorphic chip can efficiently process only
relevant events, while ignoring the vast majority of the un-
changing background data. This leads to a highly energy-
efficient processing pipeline, which is essential for applica-

Figure 1. The free-space optical setup built for data collection.
Light emitted by the 633 nm He-Ne laser is focused on a Poly-
methyl methacrylate microfluidic channel. Diffraction, scattering
and interference of light due to moving particles cause changes in
the intensity of light incident on the event sensor.

tions such as flow cytometry, where low power consumption
is important. Overall, the combination of event-based cam-
eras and spiking neural network neuromorphic chips holds
great promise for achieving highly efficient and accurate
event-based processing in a wide range of computer vision
applications [1].

2.1. Related work

Recent work has shown that an event-based camera can
achieve high throughput of >1,000 samples per second [5].
The operating principle of the event-based camera inher-
ently filters out temporally redundant information, allowing
for higher sample throughput at similar data rates. How-
ever, He et al. [5] use an artificial neural network (ANN)
for which the event-based data is converted into frames, thus
losing the data sparsity. In order to use conventional com-
puter vision algorithms on event-based data, it is typically
necessary to convert the data into frames. A more natural
approach is to process event-based data using event-based
processing schemes. We propose the use of spiking neu-
ral networks (SNNs) to process the imaging data in a fully
event-based way. Zhang et al. [12] have outlined a proof of
concept system for the curation of a neuromorphic imaging
cytometry dataset, using an event-based camera for imaging
cytometry and a spiking neural network for classification,
but did not present any performance results.

3. Approach
3.1. Optical setup for flow cytometry

The experimental setup is shown in Fig. 1. We send arti-
ficial Polymethyl methacrylate microfluidic microbeads of
different sizes to a narrow microfluidic channel (of width
200 µm). The intensity of the light detected by the event-
camera stays approximately constant as long as no particle
is moving across the field of view. This does not trigger any
pixel to fire events. However, once particles enter the field
of view, diffraction, scattering and interference of the light



trigger events which we use later to train our spiking neural
network. We use a Prophesee EVK-1-VGA camera in our
setup.

We leverage the light-matter interaction between our co-
herent light source, a 633 nm He-Ne laser, and the parti-
cles passing through the microfluidic channel as a nonlin-
ear high-dimensional expansion. We thus extract features
for the classifier in the optical domain at the speed of light.
This scales favorably to more complex classification tasks,
such as classifying biological cells, at constant computation
time for the optical feature extraction.

The fact that we obtain events only in the presence of
particles significantly improves the memory efficiency of
the overall system. The size of the dataset we get with our
system is on the order of 1.25GB per minute of data record-
ing, which presents a 10x reduction compared to work us-
ing a traditional frame-based camera [7]. Moreover, using a
spiking neural network to process the data from the event-
based camera will allow for a reduction in dynamic power
consumption of the processor, as the spiking neural network
only processes data when particles are passing through the
camera’s field of vision.

3.2. Data collection

We used two different classes of spherical microparti-
cles (class A of diameter 16 µm and class B of diameter 20
µm) which we purchased from PolyAn GmbH based in Ger-
many. We ran four separate experiments for each class of
microparticles, where each experiment ran for Texp ≈ 60s
for a total of 480 seconds of data per class. The accumu-
lation time for a single particle is Tacc ≈ 1ms. Therefore,
we have around 6,000 samples per experiment, or 24,000
samples in total per class. Our event-based camera has mi-
crosecond resolution with a sensor of size 640x480 with two
channels for events of ‘up’ and ‘down’ polarity. Our dataset
is open-source and available online [2].
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Figure 2. Normalized event count for recordings from the event-
based camera. The x-axis was scaled differently to adjust for par-
ticle flow speed. Top: data recorded from artificial particles for the
present experiment over 10ms. Bottom: data recorded from bio-
logical cells for a forthcoming experiment over 1s.

The data recorded is shown in Figure 2 (top). The back-
ground noise is easily removed by a low-pass filter, which
we will describe as part of our data pre-processing pipeline.
The particles are not passing through the flow cell at equal
speed or equal time intervals, which can be seen by the
peaks of varying width and distances from another in Fig-
ure 2 (top). This can be remedied, for example, by utilizing
an automated microfluidic pump which guarantees a con-
stant flow rate in our system. Using the same experimen-
tal setup with different particles, we obtained much cleaner
measurements. In Figure 2 (bottom), we show data from
measurements on biological cells. The different cells pass-
ing through the flow cell can be identified much more easily
by pronounced peaks that are clearly separated in time.

3.2.1 Preprocessing

We implement two pre-processing steps to compress our
data. First, we downsample the event camera’s resolution
by 20x to yield a 32x24 pixel grid with two channels. At
this stage, duplicate events are not dropped. Second, we
pass all samples through a layer of leaky integrate-and-fire
(LIF) neurons. For every downsampled pixel, we have a
LIF neuron with:

vxyp(t) = σv(t− 1) + wnin
xyp(t) (1)

sxyp(t) = (vxyp(t) > vthr) (2)

where x ∈ {0, ..., 31}, y ∈ {0, ..., 23}, p ∈ {0, 1} index
the neurons, nin

xyp(t) is the number of spikes at time t at the
corresponding index, and σ = 0.9, w = 1.0, vthr = 3.0
are parameters of the neuron. We further add a refractory
period Trefr = 2 in which all incoming spikes are ignored.
After a spike sxyp(t

∗) at time t∗, the membrane potential is
reset to vxyp(t

∗+1) = vrest = 0. Time is discretized using
a timestep of 1µs, as this is the temporal resolution of the
event-based camera. This pre-processing pipeline leads to a
≈ 85% compression of the dataset. It is important to note
that our entire pre-processing pipeline is compatible with
the neuromorphic chip we use in this experiment.

3.2.2 Filtering low-activity samples

As described in Section 3.2, we have ≈ 24,000 samples per
class. However, due to the slight inhomogenous distribution
of particles in the solution, in some samples no particles
are passing through the visual field, and they contain only
background noise. To train our system only on meaningful
data, we remove samples with less than 1,000 events which
is our empirically determined threshold for a particle being
observed. In this way, we filter out ≈ 80% of the samples.
Four samples from the filtered and preprocessed dataset are
visualized in Figure 3, showing both a frame reconstruction
and the event count over time.
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Figure 3. Visualization of four samples from the dataset. The left two plots show particles of class A, the right two plots show particles
of class B. Top: image reconstruction from the event-based data using, where the polarities are collapsed by subtracting the number of
negative events from the number of positive events for every pixel, accumulated over 1ms and then normalized. Two pixels in the top-left
corner are fixed to extreme values. Bottom: number of positive and negative events over time for the same sample.

3.3. Classification task

The goal of our system is to classify particles as belong-
ing to either class A, or class B. For a fair assessment of
our system, we report its performance on data from novel
experiments, in order to avoid overfitting to specific mea-
suring conditions. As we have data from four experiments,
we train our system on four different train-test splits. Each
data split is using a different experiment as testing data, and
the remaining three experiments as training data.

3.4. Spiking neural networks

In the following, we describe the model of our spiking
neural networks, the SLAYER method for training a feed-
forward spiking neural network, and how a trained network
is tranferred to the Loihi 2 chip for inference.

3.4.1 Neuron model

We choose a current-based leaky integrate-and-fire neuron
model (CUBA), which is compatible with Loihi 2. The neu-
ron dynamics are modeled in discrete time as:

u(n) = (1− τu)u(n− 1) + ain (3)
v′(n) = (1− τv)v(n− 1) + u(n) + b (4)

sout(n) = v′(n) > vthr (5)
v(n) = v′(n) ∗ (1− sout(n)) (6)

where u(n) is the current flowing into the neuron, v(n) is
its membrane potential, τu and τv are time constants, b is a
bias, vthr is the spiking threshold, and sout is the neuron’s
output spike train. The input current ain(n) = wsin(n)
is injected through the synapse with a trainable synaptic
weight w.

3.4.2 Training

To train feed-forward spiking neural networks, we use spike
error layer re-assigment in time (SLAYER [9]). Given un-
coming spike trains si(t) =

∑
f δ(t − tfi ), where {tfi } are

the spike times for input i, a neuron is modeled as:

u(t) =
∑
i

wi(ϵ ∗ si)(t) (7)

s(t) = fs(u(t)) (8)

where wi is a synaptic weight, ∗ is the convolution operator,
ϵ is the spike response kernel, s(t) is the neuron’s output
spike train and fs is the spike function.

For the backward pass, SLAYER unrolls the computa-
tional graph of the SNN in time, and applies backprop-
agation through time (BPTT) to the spiking feed-forward
neural network. However, as the spike function is non-
differentiable, BPTT cannot be implemented directly. To
solve this, SLAYER views the neuron probabilistically to
approximate the spike function derivative using the spike
escape rate of the probabilistic neuron model. This is sim-
ilar to the concept of a surrogate gradient, which is used in
other methods that approximate BPTT for SNNs.

Our output layer contains two neurons, one for each class
that the particle may belong to. We encode the prediction of
the spiking neural network into the spike rate of the output
neurons. The loss function for a single sample is given by:

r̂i =

{
rtrue if i is the correct class
rfalse if i is the incorrect class

(9)

Lrate =
∑
i

(ri − r̂i) (10)

where r is the vector of output spike rates of the network
and r̂ is the true vector of output spike rates, as determined



by the class of the current sample and the hyperparameters
rtrue and rfalse which indicate the desired spike rate for the
correct class and the incorrect class, respectively. We set
rtrue = 0.3 and rfalse = 0.02 for all experiments, except
where noted otherwise.

A key advantage to SLAYER over other methods is that
it also provides a temporal credit assignment policy, while
many other methods neglect the effect of earlier spike in-
puts [9]. Moreover, SLAYER can optimize both the synap-
tic weights and the axonal delays of a network, thereby
enabling the network to learn richer spatiotemporal pat-
terns. This presents a major advantage for flow cytome-
try, as learning is facilitated not only in the spatial domain
(as with conventional frame-based cameras), but also in the
temporal domain.

The spike response model that SLAYER uses allows for
an efficient convolution-based implementation of the for-
ward pass. We use the PyTorch-based lava-dl1 library to
train the network using SLAYER.

3.4.3 Inference on chip

In order to run our trained SNN on the Loihi 2, we use a
limited-precision model that is compatible with the chip.
All parameters and variables are integer values of fixed pre-
cision according to the constraints of the hardware. To train
for the fixed precision constraints on weights and delays of
Loihi 2, we train the network with the quantization con-
straints where the constrained network is used in the for-
ward propagation phase and full precision shadow variables
are used in the backward pass.

4. Experiments
We proceed by introducing different frame-based clas-

sification systems, using linear models and artificial neural
networks, as a baseline, and different spiking neural net-
works for use in an event-based neuromorphic classification
pipeline.

4.1. Linear classifier on frames

As a first step, we train a linear classifier on our dataset.
The performance of this linear model then serves as a base-
line against which we will compare our spiking neural net-
work. We aggregate the events of each sample of Tacc =
1ms into a frame with two channels that represent the polar-
ities, leading to a three-dimensional array of size 32x24x2
where each value represents the number of events for a cer-
tain pixel and polarity. We scale the feature values by re-
moving the mean and scaling to unit variance, where the
mean and variance are computed with respect to the train-
ing data.

1See https://github.com/lava-nc/lava-dl.

Our logistic classifier predicts the probability of a sample
Xi belonging to class A as:

p̂i =
1

1 + exp(−Xiw − w0)
(11)

where w and w0 are parameters of the classifier. We fit a
logistic regression classifier by minimizing the function:

N∑
i=1

(−yi log p̂i − (1− yi) log(1− p̂i)) + r(w) (12)

where yi is the true label, N is the number of train-
ing samples and r(w) = 1

2w
Tw is the L2 regular-

ization term. We use an approximation of the Broy-
den–Fletcher–Goldfarb–Shanno algorithm to solve the op-
timization problem. This results in a training accuracy of
98.75% and testing accuracy of 96.05%, averaged over all
four data folds, see Figure 4. The high accuracy of the
linear classifier confirms the optical setup, which acts as
a high-dimensional nonlinear feature map, thereby making
the imaging data (nearly) linearly separable. It is important
to note that we have shown the linear separability only for
samples represented by a single frame which aggregates all
events during the sample. It is not clear if sparse “frames”
with 1µs resolution are linearly classifiable with the same
level of accuracy. Indeed, we later show that this is not the
case, and performance depends on the sampling time, i.e.
the time resolution at which events are resolved.

4.2. Neural networks on frames

We also train neural networks on frames of our samples,
applying the same zero-mean unit-variance scaling as for
the linear classifier. We first train a multi-layer perceptron
(MLP) with two hidden layers of 512 units each, with a
ReLU activation function. We optimize the weights over 10
epochs using the Adam optimizer on the crossentropy loss
with a learning rate of 0.001. We run the training on a GPU
with a batch size of 64. The resulting training and testing
accuracies are 99.52% and 97.51%, respectively, showing a
small but significant improvement over the linear classifier.
The results are shown in Figure 4.

We also train a simple convolutional neural network
(CNN) containing a convolutional layer with 32 filters, a
convolutional layer with 64 filters, and a fully connected
layer with 512 units. Both convolutional layers use 3x3 ker-
nels and are followed by max pooling layers with pool size
2x2. All layers use the ReLU activation function, except the
last layer which uses a softmax. The network is also opti-
mized using the Adam optimizer on the crossentropy loss
with a learning rate of 0.001, and was trained for 20 epochs
on a GPU using a batch size of 64. The resulting training
and testing accuracies are 99.67% and 97.09%, respectively.
Compared to the simpler MLP, the CNN shows increased



Frame-based data

Linear
98.86% ± 0.21%
96.05% ± 0.80%

1 layer
99.46% ± 0.20%
97.32% ± 0.55%

2 layers
99.52% ± 0.23%
97.51% ± 0.35%

CNN
99.67% ± 0.05%
97.09% ± 0.70%

Event-based data
Model 1 µs 10 µs 100 µs

Linear
98.11% ± 0.30%
96.81% ± 0.96%

97.72% ± 0.21%
95.53% ± 2.13%

86.73% ± 0.67%
83.08% ± 2.12%

1
la

ye
r No delay

99.46% ± 0.10%
98.26% ± 0.42%

99.35% ± 0.07%
98.09% ± 0.47%

87.47% ± 0.61%
84.20% ± 4.42%

Trained delay
99.43% ± 0.11%
98.45% ± 0.34%

99.37% ± 0.11%
98.13% ± 0.29%

91.51% ± 0.76%
88.99% ± 1.56%

2
la

ye
rs No delay

99.60% ± 0.17%
98.12% ± 0.38%

99.18% ± 0.12%
97.25% ± 0.67%

51.97% ± 3.42%
50.72% ± 15.29%

Trained delay
99.74% ± 0.12%
98.29% ± 0.41%

99.47% ± 0.03%
97.44% ± 0.58%

68.00% ± 11.34%
68.98% ± 2.43%

Figure 4. Training (top) and testing (bottom) accuracy for all models (mean and standard deviation over all data splits). Left: models
trained on frame reconstructions of the data. Right: models trained directly on events. All neural network layers contain 512 neurons.

training performance but decreased testing performance -
likely an indication of overfitting. It is noted that the CNN
architecture and hyperparameters were not optimized, and
running such an optimization may lead to better results.

4.3. Spiking neural networks

The results of our experiments with spiking neural net-
works are summarized in Figure 4 for a direct comparison
with the baseline classifiers on frames.

We begin by training a feed-forward neural network with
one hidden layer of 512 neurons. The output layer of the
spiking MLP (sMLP) contains two spiking neurons, one for
each class. We train the sMLP’s output neurons to spike
with a firing rate of rtrue = 0.2 or rfalse = 0.03 for
the correct and incorrect class, respectively, over the sam-
ple duration of 1000 timesteps. We train the sMLP using
Adam with a learning rate of 0.001 for 50 epochs on a
GPU with a batch size of 64. This sMLP reaches better
performance than any model we have trained on frames of
the data, namely 99.43% ± 0.11% training and 98.45% ±
0.34% testing accuracy (mean and standard deviation com-
puted over all four data splits, see Section 3.3). This perfor-
mance increase likely stems from the addition of the tem-
poral dimension for classification based on spatiotemporal
features rather than only spatial features.

4.3.1 Effect of more layers

We further train a spiking neural network with two hidden
layers of 512 neurons each, with the same training setup as
the network above. This yields a slightly higher training
acurracy of 99.60% ± 0.17% as well as a slighly lower test-
ing accuracy of 98.12% ± 0.38%, indicating that the larger
capacity of the two-layer network allows for overfitting on
the training data. This is in line with our expectation that
a simpler network architecture should be enough, as much

of the computation is happening already in the optical do-
main. This allows us to use a simple network architecture
with only one hidden layer, effectively decreasing the la-
tency that processing data through multiple hidden layers
would introduce.

4.3.2 Effect of delay

We also train a spiking neural network without delay, which
shows a small performance decrease of approximately 0.2%
in both training and testing accuracy, resulting in a test ac-
curacy of 98.26% ± 0.42%. This may be explained by the
fact that trainable delays allow the network to select a richer
set of spatiotemporal features than would be possible with-
out delays. We conjecture that recurrent connections in the
spiking neural network may further increase performance -
and may indeed be necessary to solve more complex classi-
fication tasks that require longer memory, see Section 5.

4.3.3 Effect of longer sampling time

So far we have trained every spiking neural network on
events with the highest temporal resolution available to us,
i.e. a sampling time of 1µs. However, to run our system
in real time, this puts a large burden on the neuromorphic
processor: it has only 1µs to read data from the event-based
camera and process the data through the spiking neural net-
work. This is not feasible with our current setup. Therefore,
we also train spiking neural network with a sampling time
of 10µs and 100µs. This still provide us with an input spike
train of 100 and 10 timesteps, respectively, which allows us
to use some temporal dynamics of the flow cytometry for
classification. We use an identical training setup as before,
except that with a sampling time of 100µs, we change the
target spiking rates to rtrue = 0.8 for the correct class and
rfalse = 0.2 for the incorrect class, as the network only
runs for ten timesteps on each sample.
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Note that the input to the spiking neural network is bi-
nary. At every timestep, there is only one binary value for
every pixel and polarity. We thus discard information about
the rate of events, which was present in the data that the
baseline classifiers were trained on (see Sections 4.1-4.2),
and in the data for the sMLPs trained previously. This is-
sue can be avoided by working with graded spikes which is
supported by Loihi 2 but requires further pre-processing of
the data, which is not desirable for our setup.

It shows that a sampling time of 100µs is too long, with
the network reaching only 88.99% ± 1.56% which is sig-
nificantly below our linear baseline classifiers on the frame
representation of the data. Clearly, 10 timesteps are not
quite enough for the network to classify the particles. For a
sampling time of 10µs and identical training conditions as
before, the spiking neural network reaches a training accu-
racy of 99.37% ± 0.11% and testing accuracy of 98.13%
± 0.29%, which is competitive to the performance reached
with a sampling time of 1µs.

4.3.4 Comparison

For completeness, we trained spiking neural networks with
all mentioned variations. For the three different sampling
times of 1µs, 10µs and 100µs, we train spiking neural net-
works with one hidden layer of 512 neurons and two hid-
den layers of 512 neurons. We train each network with and
without trainable axonal delay. The results are shown in the
table of Figure 4. The best performance was achieved by
a one-layer spiking neural network with trained axonal de-
lays at a sampling time of 1µs, with a final testing accuracy
of 98.45% ± 0.34%. With a higher sampling time of 10µs,
the best-performing network was also a one-layer network
with trained axonal delays, reaching a final testing accuracy
of 98.13% ± 0.29%. Depending on the available hardware
and real-time processing constraint it may be worth trading

off some accuracy for a higher sampling time, as we will
show next. The best-performing network for the sampling
time of 100µs also has only one hidden layer, reaching a fi-
nal testing accuracy of 88.99% ± 1.56%. This is well below
our baseline classifier, thus to use a spiking neural network
for this sampling time we suppose that graded input spikes
must be used.

Finally, we also train linear classifiers on the input spike
trains of different sampling times. As expected, the linear
classifiers typically perfom well below the spiking MLPs,
especially for longer sampling times. This can be explained
by the memory and nonlinearity that the spiking network
adds.

4.4. Neuromorphic hardware implementation

The spiking neural networks from the previous sec-
tion were trained offline using a GPU. We use the trained
weights and delays of two spiking neural networks with
trained delays to configure the Loihi 2 chip for inference.
We use the best-performing networks for a sampling time
of 10µs with one and two hidden layers. We chose this
sampling time to make real-time processing easier, see Sec-
tion 5.1. The accuracy of the spiking neural networks on the
Loihi 2 chip is identical to the results obtained in simulation,
shown in Figure 4. See Section 3.4.3 for more details.

The Loihi 2 chip has 128 neurocores in total. The 1-
layer SNN occupies 44 neurocores with a total of 6,620
synapses, while the 2-layer SNN occupies 57 neurocoes
with a total of 13,039 synapses. For a single sample of 10ms
with a sampling time of 10µs (containing 948 events in to-
tal), the 1-layer SNN requires 392,200 synaptic operations,
while the 2-layer SNN requires 6,072,829 synaptic opera-
tions. Furthermore, the 1-layer SNN is 4x faster than the
2-layer SNN. These metrics are visualized in Figure 6.
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Figure 6. Profiling results from inference of two trained spiking neural networks on the Loihi 2 chip. See text for explanation.

5. Outlook

We point out two promising directions for the nascent
field of neuromorphic flow cytometry [3, 5, 12].

5.1. Real-time processing

For the experiments in this paper, we have not been able
to use the event-based vision interface on Loihi, as it was
not fully supported by the Lava software framework at the
time of writing. Therefore, we are not able to run the classi-
fication in real-time. It is difficult to estimate if our network
will be able to run in real-time on Loihi 2. We deem real-
time classification with a sampling time of 1µs unrealistic.
To the best of our knowledge, running in real time with a
sampling time of 100µs should be possible. Running in
real-time with a sampling time of 10µs may also be possi-
ble. The performance of our networks was not competitive
with a sampling time of 100µs, thus for this setting the data
needs to be pre-processed into graded input spike trains (see
discussion in Section 4.3).

Alternatively, a system-on-chip (SoC) event-based cam-
era with integrated processing on-chip (such as SynSense’s
Speck2) may be used to run our network. The Speck SoC
can run the events produced from the event-based camera
through its integrated processing unit in real time.

5.2. Local and online learning

We presented results obtained by training a feed-forward
spiking neural network through backpropagation. This pro-
cedure requires collecting training data and training a spik-
ing neural network through surrogate gradient methods on
a conventional computer. This is suitable for flow cytome-
try, where machine learning algorithms are typically trained
offline. However, it is also possible to use more hardware-
friendly methods for training our spiking neural network.
As we are able to solve the classification task sufficiently
well using only a feed-forward spiking neural network with
one hidden layer, using a simple one-layer spiking recur-
rent neural network (sRNN) will yield comparable, or bet-
ter, performance. The recurrence gives the network longer

2See https://www.synsense.ai/products/speck/

memory, which can help with more complex particle clas-
sifications, such as for biological cells. Although sRNNs
are difficult to train with backpropagation through time, we
conjecture that a version of forward propagation through
time that was recently proposed for spiking recurrent neu-
ral networks will solve this task [11], while also allowing
for an online learning setup. Alternatively, a reservoir com-
bined with local plasticity, such as spike-timing dependent
plasticity (STDP), has been shown to perform well on tasks
of similar complexity, and can be extended to a deep reser-
voir architecture [10]. This is fully compatible with on-chip
learning on Loihi 2 and may even be extended to three-
factor learning rules such as reward-modulated STDP.

6. Conclusion

We presented a spiking neural network trained with
SLAYER and running on Loihi 2 that solves a binary parti-
cle classification task in a flow cytometry setup. We high-
lighted the promise of this setup for accurate and fast flow
cytometry, and suggest that our experimental setup - par-
ticularly our free-space optical setup - will scale favorably
to more complex classification tasks and faster flow rates
of the particles. In accordance with literature [3–5, 12], we
demonstrate that event-based cameras are suitable for flow
cytometry and implement, for the first time, a spiking neu-
ral network on neuromorphic hardware for particle classifi-
cation. We further demonstrated a neuromorphic advantage
in terms of accuracy, as none of the tested artificial neu-
ral networks using frames outperformed our spiking neu-
ral network trained directly on events from the event-based
camera. We illustrated the promise of further research in
this area, in particular real-time classification and on-chip
learning.
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