

Part 1: Modern Language Models

● LLMs 101

● Make Transformers Efficient

○ Keeping self-attention

○ Supplementing self-attention

○ Modifying/replacing self-attention

Overview

Part 2: Next-Generation Language Models

● State-Space Models

● Neuromorphic Hardware

● MatMul-free LM on Loihi

● What’s next?

Pop Quiz: Energy Bill of LLMs in Dollars?

Inference: $1M p/day
Training: Approaching $100M

Part 1: Modern Language Models

● LLMs 101

● Make Transformers Efficient

○ Keeping self-attention

○ Supplementing self-attention

○ Modifying/replacing self-attention

Overview

Part 2: Next-Generation Language Models

● State-Space Models

● Neuromorphic Hardware

● MatMul-free LM on Loihi

● What’s next?

LLMs 101

Input: A sequence
Output: The next item in that sequence
Repeat.

“The cat in the…”

The objective of a language model is to predict the next token.

“Autoregression”

LLMs 101

Input: A sequence
Output: The next item in that sequence
Repeat.

“The cat in the…”

The objective of a language model is to predict the next token.

“Autoregression”

hostage-negotiation

LLMs 101

Input: A sequence
Output: The next item in that sequence
Repeat.

“The cat in the…

The objective of a language model is to predict the next token.

“Autoregression”

demanded
hostage-negotiation”

LLMs 101

Input: A sequence
Output: The next item in that sequence
Repeat.

“The cat in the…

The objective of a language model is to predict the next token.

“Autoregression”

12
hostage-negotiation
demanded”

LLMs 101

Input: A sequence
Output: The next item in that sequence
Repeat.

“The cat in the…

The objective of a language model is to predict the next token.

“Autoregression”

laser-pointers
hostage-negotiation
demanded 12”

LLMs 101

Input: A sequence
Output: The next item in that sequence
Repeat.

“The cat in the…

The objective of a language model is to predict the next token.

“Autoregression”

<|EndOfText|>
hostage-negotiation
demanded 12
laser-pointers”

LLMs 101

Input: A sequence
Output: The next item in that sequence
Repeat.

“The cat in the…”

The objective of a language model is to predict the next token.

“Autoregression”

LLMs 101

Input: A sequence
Output: The next item in that sequence
Repeat.

“The cat in the…”

The objective of a language model is to predict the next token.

“Autoregression”

hat

LLMs 101

Input: A sequence
Output: The next item in that sequence
Repeat.

“The cat in the…

The objective of a language model is to predict the next token.

“Autoregression”

sat
hat

LLMs 101

Input: A sequence
Output: The next item in that sequence
Repeat.

“The cat in the…

The objective of a language model is to predict the next token.

“Autoregression”

on
hat sat

LLMs 101

Input: A sequence
Output: The next item in that sequence
Repeat.

“The cat in the…

The objective of a language model is to predict the next token.

“Autoregression”

the
hat sat on

LLMs 101

Input: A sequence
Output: The next item in that sequence
Repeat.

“The cat in the…

The objective of a language model is to predict the next token.

“Autoregression”

mat
hat sat on the

LLMs 101

Input: A sequence
Output: The next item in that sequence
Repeat.

“The cat in the…

The objective of a language model is to predict the next token.

“Autoregression”

<|EndOfText|>
hat sat on the mat”

Teacher Forcing

“The cat in the… hostage-negotiation

Teacher Forcing

“The cat in the… hostage-negotiation
hat”

But Neural Networks Need Numbers - Not Words.

Tokenization: breaking text up into common words, pieces of words, and characters

The cat in the hostage-negotiation demanded 12 laser pointers

“The cat in the…”

But Neural Networks Need Numbers - Not Words.

Tokenization: breaking text up into common words, pieces of words, and characters

The cat in the hostage-negotiation demanded 12 laser pointers

Number of characters: 30,506

Number of tokens (GPT-2): 9,638

But Neural Networks Need Numbers - Not Words.

Tokenization: breaking text up into common words, pieces of words, and characters

The cat in the hostage-negotiation demanded 12 laser pointers

Embedding: a vectorized representation of tokens

But Neural Networks Need Numbers - Not Words.

Tokenization: breaking text up into common words, pieces of words, and characters

The cat in the hostage-negotiation demanded 12 laser pointers

-0.068

-0.030

0.064

…

-0.01

0.003

Embedding: a vectorized representation of tokens

But Neural Networks Need Numbers - Not Words.

Tokenization: breaking text up into common words, pieces of words, and characters

The cat in the hostage-negotiation demanded 12 laser pointers

-0.068

-0.030

0.064

…

-0.01

0.003

-0.016

-0.093

0.242

…

-0.17

-0.158

Embedding: a vectorized representation of tokens

But Neural Networks Need Numbers - Not Words.

Tokenization: breaking text up into common words, pieces of words, and characters

The cat in the hostage-negotiation demanded 12 laser pointers

-0.068

-0.030

0.064

…

-0.01

0.003

-0.016

-0.093

0.242

…

-0.17

-0.158

0.155

0.048

0.153

…

-0.078

-0.069

-0.064

-0.049

0.206

…

-0.047

-0.100

. . .

Embedding: a vectorized representation of tokens

But Neural Networks Need Numbers - Not Words.

Tokenization: breaking text up into common words, pieces of words, and characters

The cat in the hostage-negotiation demanded 12 laser pointers

-0.016

-0.093

0.242

…

-0.17

-0.158

0.155

0.048

0.153

…

-0.078

-0.069

-0.064

-0.049

0.206

…

-0.047

-0.100

. . .

Embedding: a vectorized representation of tokens

-0.068

-0.030

0.064

…

-0.01

0.003

But Neural Networks Need Numbers - Not Words.

Tokenization: breaking text up into common words, pieces of words, and characters

The cat in the hostage-negotiation demanded 12 laser pointers

-0.068

-0.030

0.064

…

-0.01

0.003

-0.016

-0.093

0.242

…

-0.17

-0.158

0.155

0.048

0.153

…

-0.078

-0.069

-0.064

-0.049

0.206

…

-0.047

-0.100

. . .

Embedding: a vectorized representation of tokens

-0.11 0.04 -0.12 … -0.04 0.19 -0.05

0.04 -0.05 0.05 … -0.05 0.02 -0.03

-0.12 0.05 0.18 … 0.01 0.05 0.05

-0.09 -0.10 -0.09 … 0.14 -0.01 -0.04

-0.05 0.08 0.08 … 0.10 -0.07 -0.06

… … … … … … …

! “ # informants
gazed

<|endoftext|>

GPT2’s Tokenizer

Vocabulary Size: 50256

Em
b

ed
d

in
g

Si
ze

: 7
6

8

-0.11 0.04 -0.12 … -0.04 0.19 -0.05

0.04 -0.05 0.05 … -0.05 0.02 -0.03

-0.12 0.05 0.18 … 0.01 0.05 0.05

-0.09 -0.10 -0.09 … 0.14 -0.01 -0.04

-0.05 0.08 0.08 … 0.10 -0.07 -0.06

… … … … … … …

! “ # informants
gazed

<|endoftext|>

GPT2’s Tokenizer

Word-level vocabulary = huge dictionary
Character-level vocabulary = huge context

Vocabulary Size: 50256

Em
b

ed
d

in
g

Si
ze

: 7
6

8

Modern LLM Tokenizers
• GPT3: 100k x 768

• DeepSeek: 100k x 7k
• Claude: 65k x 1k

• Llama4: 200k x 5k

GPT Token List

Word-level vocabulary = huge dictionary
Character-level vocabulary = huge context

Modern LLM Tokenizers
• GPT3: 100k x 768

• DeepSeek: 100k x 7k
• Claude: 65k x 1k

• Llama4: 200k x 5k

GPT Token List

Word-level vocabulary = huge dictionary
Character-level vocabulary = huge context

Modern LLM Tokenizers
• GPT3: 100k x 768

• DeepSeek: 100k x 7k
• Claude: 65k x 1k

• Llama4: 200k x 5k

GPT Token List

Word-level vocabulary = huge dictionary
Character-level vocabulary = huge context

Modern LLM Tokenizers
• GPT3: 100k x 768

• DeepSeek: 100k x 7k
• Claude: 65k x 1k

• Llama4: 200k x 5k

Unembedding

“The cat in the…”
V

ocab
ulary Size: 50

256
hat

𝑧1
𝑧2
𝑧3
⋮

𝑧50254
𝑧50255
𝑧50256

Unembedding

“The cat in the…”

0.00
0.00
⋮

0.99
0.00
⋮

0.01
0.00
⋮

0.00

a
aardvark

hat
hater

hostage-negotiation
hosted

zythum

Temperature: T = 0

hostage-negotiation
hosted

Unembedding

“The cat in the…”

0.00
0.00
⋮

0.99
0.00
⋮

0.01
0.00
⋮

0.00

a
aardvark

hat
hater

zythum

Temperature: T = 1

hostage-negotiation
hosted

Unembedding

“The cat in the…”

0.00
0.00
⋮

0.99
0.00
⋮

0.01
0.00
⋮

0.00

a
aardvark

hat
hater

zythum

Temperature: T = 2

hostage-negotiation
hosted

Unembedding

“The cat in the…”

0.00
0.00
⋮

0.99
0.00
⋮

0.01
0.00
⋮

0.00

a
aardvark

hat
hater

zythum

Temperature: T = 20

The cat in the…

The Anatomy of a Language Model: GPT-3

12,228

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

1 1

𝑄1 𝑄2 𝑄3 𝑄4

2 1 3 1 4 1

𝐾1

𝐾2

𝐾3

𝐾4

1 2 2 2 3 2 4 2

1 3 2 3 3 3 4 3

1 4 2 4 3 4 4 4

The cat in the…

The Anatomy of a Language Model: GPT-3

12,228

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

𝑄1 𝑄2 𝑄3 𝑄4

𝐾1

𝐾2

𝐾3

𝐾4

The cat in the…

The Anatomy of a Language Model: GPT-3

12,228

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

𝑄1 𝑄2 𝑄3 𝑄4

𝐾1

𝐾2

𝐾3

𝐾4

𝑐𝑎𝑡

𝑖𝑛

The cat in the…

The Anatomy of a Language Model: GPT-3

12,228

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

𝑄1 𝑄2 𝑄3 𝑄4

𝐾1

𝐾2

𝐾3

𝐾4

ൗ
𝑑

ൗ
𝑑

ൗ
𝑑

ൗ
𝑑

ൗ
𝑑

ൗ
𝑑

ൗ
𝑑

ൗ
𝑑

ൗ
𝑑

ൗ
𝑑

ൗ
𝑑

ൗ
𝑑

ൗ
𝑑

ൗ
𝑑

ൗ
𝑑

ൗ
𝑑

The cat in the…

The Anatomy of a Language Model: GPT-3

12,228

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

𝑄1 𝑄2 𝑄3 𝑄4

𝐾1

𝐾2

𝐾3

𝐾4

𝑒𝑧𝑖

σ𝐽=1
𝐾 𝑒𝑧𝑗

Softmax

The cat in the…

The Anatomy of a Language Model: GPT-3

12,228

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

𝑄1 𝑄2 𝑄3 𝑄4

𝐾1

𝐾2

𝐾3

𝐾4

𝑒𝑧𝑖

σ𝐽=1
𝐾 𝑒𝑧𝑗

Softmax

The cat in the…

The Anatomy of a Language Model: GPT-3

12,228

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

𝑄1 𝑄2 𝑄3 𝑄4

𝐾1

𝐾2

𝐾3

𝐾4

𝑒𝑧𝑖

σ𝐽=1
𝐾 𝑒𝑧𝑗

Softmax
0.01 0.01 0.00 0.23

0.97 0.00 0.99 0.27

0.01

0.01

0.99

0.00

0.00

0.01

0.21

0.29

The cat in the hat sat on the mat

The cat in the…

The Anatomy of a Language Model: GPT-3

12,228

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

𝑄1 𝑄2 𝑄3 𝑄4

𝐾1

𝐾2

𝐾3

𝐾4

𝑒𝑧𝑖

σ𝐽=1
𝐾 𝑒𝑧𝑗

Softmax
0.01 0.01 0.00 0.23

0.97 0.00 0.99 0.27

0.01

0.01

0.99

0.00

0.00

0.01

0.21

0.29

1.00 1.00 1.00 1.00

−∞ 1.00 1.00 1.00

−∞

−∞

−∞

−∞

1.00

−∞

1.00

1.00

Causal Mask

The cat in the…

The Anatomy of a Language Model: GPT-3

12,228

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

𝑄1 𝑄2 𝑄3 𝑄4

𝐾1

𝐾2

𝐾3

𝐾4

1.00 1.00 0.00 0.23

0.00 0.00 1.00 0.27

0.00

0.00

0.00

0.00

0.00

0.00

0.21

0.29

The cat in the…

haste
hasty
hat
hater
haughtiness
haughty

The cat in the…

The Anatomy of a Language Model: GPT-3

12,228

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

𝑄1 𝑄2 𝑄3 𝑄4

𝐾1

𝐾2

𝐾3

𝐾4

1.00 1.00 0.00 0.23

0.00 0.00 1.00 0.27

0.00

0.00

0.00

0.00

0.00

0.00

0.21

0.29

The cat in the…

haste
hasty
hat
hater
haughtiness
haughty

The cat in the…

The Anatomy of a Language Model: GPT-3

12,228

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

𝑄1 𝑄2 𝑄3 𝑄4

𝐾1

𝐾2

𝐾3

𝐾4

1.00 1.00 0.00 0.23

0.00 0.00 1.00 0.27

0.00

0.00

0.00

0.00

0.00

0.00

0.21

0.29

1

2

3

4

ΔE
3

ΔE′ΔE′

The cat in the…

The Anatomy of a Language Model: GPT-3

12,228

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

𝑄1 𝑄2 𝑄3 𝑄4

𝐾1

𝐾2

𝐾3

𝐾4

1.00 1.00 0.00 0.23

0.00 0.00 1.00 0.27

0.00

0.00

0.00

0.00

0.00

0.00

0.21

0.29

1

2

3

4

ΔE
3

1

2

3

4

1

2

3

4

1

2

3

4

ΔE
1

ΔE
2

ΔE
4

128
𝑊𝑉2

12,228

ΔE′1 ΔE′2 3 4

ΔE′ΔE′

The cat in the…

The Anatomy of a Language Model: GPT-3

12,228

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

𝑄1 𝑄2 𝑄3 𝑄4

𝐾1

𝐾2

𝐾3

𝐾4

1.00 1.00 0.00 0.23

0.00 0.00 1.00 0.27

0.00

0.00

0.00

0.00

0.00

0.00

0.21

0.29

1

2

3

4

ΔE
3

1

2

3

4

1

2

3

4

1

2

3

4

ΔE
1

ΔE
2

ΔE
4

128
𝑊𝑉2

12,228

ΔE′1 ΔE′2 3 4

ΔE′ΔE′

The cat in the…

The Anatomy of a Language Model: GPT-3

12,228

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

𝑄1 𝑄2 𝑄3 𝑄4

𝐾1

𝐾2

𝐾3

𝐾4

1.00 1.00 0.00 0.23

0.00 0.00 1.00 0.27

0.00

0.00

0.00

0.00

0.00

0.00

0.21

0.29

1

2

3

4

ΔE
3

1

2

3

4

1

2

3

4

1

2

3

4

ΔE
1

ΔE
2

ΔE
4

128
𝑊𝑉2

12,228

ΔE′1 ΔE′2 3 4 Multi-head Attention
GPT-3: 96 heads

ΔE′ΔE′

The cat in the…

The Anatomy of a Language Model: GPT-3

12,228

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

𝑄1 𝑄2 𝑄3 𝑄4

𝐾1

𝐾2

𝐾3

𝐾4

1.00 1.00 0.00 0.23

0.00 0.00 1.00 0.27

0.00

0.00

0.00

0.00

0.00

0.00

0.21

0.29

1

2

3

4

ΔE
3

1

2

3

4

1

2

3

4

1

2

3

4

ΔE
1

ΔE
2

ΔE
4

128
𝑊𝑉2

12,228

ΔE′1 ΔE′2 3 4

12,228
𝑊𝑈

R
e
L
U

/G
e
L
U

𝑊𝐷

4
9
,1
5
2

L
a

y
e
rN

o
rm

𝑅𝑒𝑝𝑒𝑎𝑡 96 𝑡𝑖𝑚𝑒𝑠.

Unembedding

“The cat in the…”

0.00
0.00
⋮

0.99
0.00
⋮

0.01
0.00
⋮

0.00

a
aardvark

hat
hater

hostage-negotiation
hosted

zythum

ΔE′ΔE′

The cat in the…

The Anatomy of a Language Model: GPT-3

12,228

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

𝑄1 𝑄2 𝑄3 𝑄4

𝐾1

𝐾2

𝐾3

𝐾4

1.00 1.00 0.00 0.23

0.00 0.00 1.00 0.27

0.00

0.00

0.00

0.00

0.00

0.00

0.21

0.29

1

2

3

4

ΔE
3

1

2

3

4

1

2

3

4

1

2

3

4

ΔE
1

ΔE
2

ΔE
4

128
𝑊𝑉2

12,228

ΔE′1 ΔE′2 3 4

12,228
𝑊𝑈

R
e
L
U

/G
e
L
U

𝑊𝐷

4
9
,1
5
2

L
a

y
e
rN

o
rm

𝑅𝑒𝑝𝑒𝑎𝑡 96 𝑡𝑖𝑚𝑒𝑠.

ΔE′ΔE′

The cat in the hat

The Anatomy of a Language Model: GPT-3

12,228

12,228

ΔE′1 ΔE′2 3 4

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

𝑄1 𝑄2 𝑄3 𝑄4

𝐾1

𝐾2

𝐾3

𝐾4

1.00 1.00 0.00 0.23

0.00 0.00 1.00 0.27

0.00

0.00

0.00

0.00

0.00

0.00

0.21

0.29

1

2

3

4

ΔE
3

1

2

3

4

1

2

3

4

1

2

3

4

ΔE
1

ΔE
2

ΔE
4

128
𝑊𝑉2

12,228
𝑊𝑈

R
e
L
U

/G
e
L
U

𝑊𝐷

4
9
,1
5
2

L
a

y
e
rN

o
rm

𝑅𝑒𝑝𝑒𝑎𝑡 96 𝑡𝑖𝑚𝑒𝑠.

ΔE′ΔE′

The cat in the hat

The Anatomy of a Language Model: GPT-3

12,228

12,228

ΔE′1 ΔE′2 3 4

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

𝑄1 𝑄2 𝑄3 𝑄4

𝐾1

𝐾2

𝐾3

𝐾4

1.00 1.00 0.00 0.23

0.00 0.00 1.00 0.27

0.00

0.00

0.00

0.00

0.00

0.00

0.21

0.29

1

2

3

4

ΔE
3

1

2

3

4

1

2

3

4

1

2

3

4

ΔE
1

ΔE
2

ΔE
4

𝑊𝑉2

12,228
𝑊𝑈

R
e
L
U

/G
e
L
U

𝑊𝐷

4
9
,1
5
2

L
a

y
e
rN

o
rm

𝑅𝑒𝑝𝑒𝑎𝑡 96 𝑡𝑖𝑚𝑒𝑠.

ΔE′ΔE′

The cat in the hat

The Anatomy of a Language Model: GPT-3

12,228

12,228

ΔE′1 ΔE′2 3 4

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

𝑄1 𝑄2 𝑄3 𝑄4

𝐾1

𝐾2

𝐾3

𝐾4

1.00 1.00 0.00 0.23

0.00 0.00 1.00 0.27

0.00

0.00

0.00

0.00

0.00

0.00

0.21

0.29

1

2

3

4

ΔE
3

1

2

3

4

1

2

3

4

1

2

3

4

ΔE
1

ΔE
2

ΔE
4

𝑊𝑉2

12,228
𝑊𝑈

R
e
L
U

/G
e
L
U

𝑊𝐷

4
9
,1
5
2

L
a

y
e
rN

o
rm

𝑅𝑒𝑝𝑒𝑎𝑡 96 𝑡𝑖𝑚𝑒𝑠.

𝑄5

0.00

0.84

0.00

0.15

0.01𝐾5 −∞ −∞ −∞ −∞

ΔE′ΔE′

The cat in the hat

The Anatomy of a Language Model: GPT-3

12,228

12,228

ΔE′1 ΔE′2 3 4

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

𝑄1 𝑄2 𝑄3 𝑄4

𝐾1

𝐾2

𝐾3

𝐾4

1.00 1.00 0.00 0.23

0.00 0.00 1.00 0.27

0.00

0.00

0.00

0.00

0.00

0.00

0.21

0.29

1

2

3

4

ΔE
3

1

2

3

4

1

2

3

4

1

2

3

4

ΔE
1

ΔE
2

ΔE
4

𝑊𝑉2

12,228
𝑊𝑈

R
e
L
U

/G
e
L
U

𝑊𝐷

4
9
,1
5
2

L
a

y
e
rN

o
rm

𝑅𝑒𝑝𝑒𝑎𝑡 96 𝑡𝑖𝑚𝑒𝑠.

𝑄5

0.00

0.99

0.00

0.01

𝐾5 0.000.00 0.00 0.00 0.00

ΔE′ΔE′

The cat in the hat

The Anatomy of a Language Model: GPT-3

12,228

12,228

ΔE′1 ΔE′2 3 4

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

𝑄1 𝑄2 𝑄3 𝑄4

𝐾1

𝐾2

𝐾3

𝐾4

1.00 1.00 0.00 0.23

0.00 0.00 1.00 0.27

0.00

0.00

0.00

0.00

0.00

0.00

0.21

0.29

1

2

3

4

ΔE
3

1

2

3

4

1

2

3

4

1

2

3

4

ΔE
1

ΔE
2

ΔE
4

𝑊𝑉2

12,228
𝑊𝑈

R
e
L
U

/G
e
L
U

𝑊𝐷

4
9
,1
5
2

L
a

y
e
rN

o
rm

𝑅𝑒𝑝𝑒𝑎𝑡 96 𝑡𝑖𝑚𝑒𝑠.

𝑄5

0.00

0.99

0.00

0.01

0.00𝐾5 0.00 0.00 0.00 0.00

1

2

3

4

55555

ΔE′ΔE′

The cat in the hat

The Anatomy of a Language Model: GPT-3

12,228

12,228

ΔE′1 ΔE′2 3 4

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

𝑄1 𝑄2 𝑄3 𝑄4

𝐾1

𝐾2

𝐾3

𝐾4

1.00 1.00 0.00 0.23

0.00 0.00 1.00 0.27

0.00

0.00

0.00

0.00

0.00

0.00

0.21

0.29

1

2

3

4

ΔE
3

1

2

3

4

1

2

3

4

1

2

3

4

ΔE
1

ΔE
2

ΔE
4

𝑊𝑉2

12,228
𝑊𝑈

R
e
L
U

/G
e
L
U

𝑊𝐷

4
9
,1
5
2

L
a

y
e
rN

o
rm

𝑅𝑒𝑝𝑒𝑎𝑡 96 𝑡𝑖𝑚𝑒𝑠.

𝑄5

0.00

0.99

0.00

0.01

0.00𝐾5 0.00 0.00 0.00 0.00

1

2

3

4

55555

ΔE
5

ΔE′ΔE′

The cat in the hat

The Anatomy of a Language Model: GPT-3

12,228

12,228

ΔE′1 ΔE′2 3 4

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

𝑄1 𝑄2 𝑄3 𝑄4

𝐾1

𝐾2

𝐾3

𝐾4

1.00 1.00 0.00 0.23

0.00 0.00 1.00 0.27

0.00

0.00

0.00

0.00

0.00

0.00

0.21

0.29

1

2

3

4

ΔE
3

1

2

3

4

1

2

3

4

1

2

3

4

ΔE
1

ΔE
2

ΔE
4

𝑊𝑉2

12,228
𝑊𝑈

R
e
L
U

/G
e
L
U

𝑊𝐷

4
9
,1
5
2

L
a

y
e
rN

o
rm

𝑅𝑒𝑝𝑒𝑎𝑡 96 𝑡𝑖𝑚𝑒𝑠.

𝑄5

0.00

0.99

0.00

0.01

0.00𝐾5 0.00 0.00 0.00 0.00

1

2

3

4

55555

ΔE
5

ΔE′5

ΔE′ΔE′

The cat in the hat

The Anatomy of a Language Model: GPT-3

12,228

12,228

ΔE′1 ΔE′2 3 4

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

𝑄1 𝑄2 𝑄3 𝑄4

𝐾1

𝐾2

𝐾3

𝐾4

1.00 1.00 0.00 0.23

0.00 0.00 1.00 0.27

0.00

0.00

0.00

0.00

0.00

0.00

0.21

0.29

1

2

3

4

ΔE
3

1

2

3

4

1

2

3

4

1

2

3

4

ΔE
1

ΔE
2

ΔE
4

𝑊𝑉2

12,228
𝑊𝑈

R
e
L
U

/G
e
L
U

𝑊𝐷

4
9
,1
5
2

L
a

y
e
rN

o
rm

𝑅𝑒𝑝𝑒𝑎𝑡 96 𝑡𝑖𝑚𝑒𝑠.

𝑄5

0.00

0.99

0.00

0.01

0.00𝐾5 0.00 0.00 0.00 0.00

1

2

3

4

55555

ΔE
5

ΔE′5

ΔE′ΔE′

The cat in the hat

The Anatomy of a Language Model: GPT-3

12,228

12,228

ΔE′1 ΔE′2 3 4

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

𝑄1 𝑄2 𝑄3 𝑄4

𝐾1

𝐾2

𝐾3

𝐾4

1.00 1.00 0.00 0.23

0.00 0.00 1.00 0.27

0.00

0.00

0.00

0.00

0.00

0.00

0.21

0.29

1

2

3

4

ΔE
3

1

2

3

4

1

2

3

4

1

2

3

4

ΔE
1

ΔE
2

ΔE
4

𝑊𝑉2

12,228
𝑊𝑈

R
e
L
U

/G
e
L
U

𝑊𝐷

4
9
,1
5
2

L
a

y
e
rN

o
rm

𝑅𝑒𝑝𝑒𝑎𝑡 96 𝑡𝑖𝑚𝑒𝑠.

𝑄5

0.00

0.99

0.00

0.01

0.00𝐾5 0.00 0.00 0.00 0.00

1

2

3

4

55555

ΔE
5

ΔE′5

Given a 1M context window, there would be
1012 elements in the matrix.

ΔE′ΔE′

The cat in the hat

The Anatomy of a Language Model: GPT-3

12,228

12,228

ΔE′1 ΔE′2 3 4

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

𝑄1 𝑄2 𝑄3 𝑄4

𝐾1

𝐾2

𝐾3

𝐾4

1.00 1.00 0.00 0.23

0.00 0.00 1.00 0.27

0.00

0.00

0.00

0.00

0.00

0.00

0.21

0.29

1

2

3

4

ΔE
3

1

2

3

4

1

2

3

4

1

2

3

4

ΔE
1

ΔE
2

ΔE
4

𝑊𝑉2

12,228
𝑊𝑈

R
e
L
U

/G
e
L
U

𝑊𝐷

4
9
,1
5
2

L
a

y
e
rN

o
rm

𝑅𝑒𝑝𝑒𝑎𝑡 96 𝑡𝑖𝑚𝑒𝑠.

𝑄5

0.00

0.99

0.00

0.01

0.00𝐾5 0.00 0.00 0.00 0.00

1

2

3

4

55555

ΔE
5

ΔE′5

Given a 1M context window, there would be
1012 elements in the matrix.

ΔE′ΔE′

The cat in the hat

The Anatomy of a Language Model: GPT-3

12,228

12,228

ΔE′1 ΔE′2 3 4

𝑊𝑄

𝑊𝐾

𝑊𝑉

128

128

128

p/token

𝑄1 𝑄2 𝑄3 𝑄4

𝐾1

𝐾2

𝐾3

𝐾4

1.00 1.00 0.00 0.23

0.00 0.00 1.00 0.27

0.00

0.00

0.00

0.00

0.00

0.00

0.21

0.29

1

2

3

4

ΔE
3

1

2

3

4

1

2

3

4

1

2

3

4

ΔE
1

ΔE
2

ΔE
4

𝑊𝑉2

12,228
𝑊𝑈

R
e
L
U

/G
e
L
U

𝑊𝐷

4
9
,1
5
2

L
a

y
e
rN

o
rm

𝑅𝑒𝑝𝑒𝑎𝑡 96 𝑡𝑖𝑚𝑒𝑠.

𝑄5

0.00

0.99

0.00

0.01

0.00𝐾5 0.00 0.00 0.00 0.00

1

2

3

4

55555

ΔE
5

ΔE′5

Given a 1M context window, there would be
1012 elements in the matrix.

KV-Cache
Avoids recomputing the entire attention-
matrix by storing prior vectors

- Pre-filling: The model ingests the full prompt once to establish its internal context.

- Auto-regression/decoding: It then predicts new tokens sequentially from the context until the output

is complete.

Prefill vs. auto-regressive generation

- As sequence length

increases, attention

dominates.

Self-Attention / Recurrent

Channel-MixingToken-Mixing

Residual Stream (Layer) Normalization

General Architecture of LLMs

General Architecture of LLMs

Part 1: Modern Language Models

● LLMs 101

● Make Transformers Efficient

○ Keeping self-attention

○ Supplementing self-attention

○ Modifying/replacing self-attention

Overview

Part 2: Next-Generation Language Models

● State-Space Models

● Neuromorphic Hardware

● MatMul-free LM on Loihi

● What’s next?

Part 1: Modern Language Models

● LLMs 101

● Make Transformers Efficient

○ Keeping self-attention

○ Supplementing self-attention

○ Modifying/replacing self-attention

Overview

Part 2: Next-Generation Language Models

● State-Space Models

● Neuromorphic Hardware

● MatMul-free LM on Loihi

● What’s next?

Flash Attention

Pros:

● Preserves safe and online softmax

● Block-level parallelism

Cons:

● Nothing.

Fusing kernels = minimizing memory access

Part 1: Modern Language Models

● LLMs 101

● Make Transformers Efficient

○ Keeping self-attention

○ Supplementing self-attention

○ Modifying/replacing self-attention

Overview

Part 2: Next-Generation Language Models

● State-Space Models

● Neuromorphic Hardware

● MatMul-free LM on Loihi

● What’s next?

Techniques that supplement self-attention

Attention Optimizations

● Low-Rank Approximations
● Sparse Attention Variants
● MQA/GQA

Dense Optimizations
● Mixture of Experts

Higher-Level Optimizations

● Knowledge Distillation
● Speculative Decoding

● Low-precision
● Sparsity

Attention Optimizations

● Low-Rank Approximations
● Sparse Attention Variants
● MQA/GQA

Dense Optimizations
● Mixture of Experts

Higher-Level Optimizations

● Knowledge Distillation
● Speculative Decoding

● Low-precision
● Sparsity

Techniques that supplement self-attention

Low Rank Approximation

Pros

● KV Cache Compression

● Reduced FLOPs for longer sequences

Cons

● Training instability risk

● Poorer long-range arena performance

Attention Optimizations

● Low-Rank Approximations

● Sparse Attention Variants

● MQA/GQA

Dense Optimizations

● Mixture of Experts

Higher-Level Optimizations

● Knowledge Distillation

● Speculative Decoding

Techniques that supplement self-attention

Sparse Attention

Pros

● Sparse factorizations of the attention

matrix

● Huge speed up

● DeepSeek uses a form of structured

sparsity during training time, as does

Longformer, Big Bird, Reformer,

Linformer, etc.

Cons

● Sparsity must be structured

● KV cache (typically) remains

Attention Optimizations

● Low-Rank Approximations

● Sparse Attention Variants

● MQA/GQA

Dense Optimizations

● Mixture of Experts

Higher-Level Optimizations

● Knowledge Distillation

● Speculative Decoding

Techniques that supplement self-attention

Multi/Group Query Attention

● Reduced KV Cache size

● Faster Attention Computation

● Lower Memory Bandwidth

● Llama-2, Mistral-7B

Attention Optimizations

● Low-Rank Approximations

● Sparse Attention Variants

● MQA/GQA

Dense Optimizations

● Mixture of Experts

Higher-Level Optimizations

● Knowledge Distillation

● Speculative Decoding

Techniques that supplement self-attention

Mixture of Experts

Pros

● Less FLOPs for larger models

● It’s everywhere. (ChatGPT, DeepSeek,

Mixtral)

Cons

● Non-uniform experts (need probabilistic

sampling to fix this)

Note: this is just another form of structured

sparsity. “Experts” is perhaps misleading -

representations tend to still be distributed.

Mixture of Experts: fine-grained

Pros

● Less FLOPs for larger models

● Performance scales better with finer

granularity -> more, smaller experts

Cons

● Inefficient on GPUs/TPUs (fine-grained

random memory access)

He, 2024, Mixture of a Million Experts

Attention Optimizations

● Low-Rank Approximations
● Sparse Attention Variants
● MQA/GQA

Dense Optimizations
● Mixture of Experts

Higher-Level Optimizations

● Knowledge Distillation
● Speculative Decoding

● Low-Precision
● Sparsity

Techniques that supplement self-attention

Knowledge Distillation

Pros

● Amongst the best ways to do model
compression

● DeepSeek distilled ChatGPT knowledge!

Cons
● …Thus violating ChatGPTs terms of

service

● But does ChatGPT have the right to

“protect” a model trained on
proprietary data that is not theirs?

● You also still need to have a large model
trained.

Attention Optimizations

● Low-Rank Approximations
● Sparse Attention Variants
● MQA/GQA

Dense Optimizations
● Mixture of Experts

Higher-Level Optimizations

● Knowledge Distillation
● Speculative Decoding

● Low-Precision
● Sparsity

Techniques that supplement self-attention

Speculative Decoding

● Increased throughput by multi-sampling the output

● Used widely in practice

Attention Optimizations

● Low-Rank Approximations
● Sparse Attention Variants
● MQA/GQA

Dense Optimizations
● Mixture of Experts

Higher-Level Optimizations

● Knowledge Distillation
● Speculative Decoding

● Low-Precision
● Sparsity

Techniques that supplement self-attention

Low-Precision Quantization

Pros

● Less memory

Cons

● Worse performance

But how much worse performance?

● Weights: very tolerant to low-precision

● Activations: less tolerant to low-

precision

● Normalization ops: they hate low-

precision

BitNet, Microsoft

Attention Optimizations

● Low-Rank Approximations
● Sparse Attention Variants
● MQA/GQA

Dense Optimizations
● Mixture of Experts

Higher-Level Optimizations

● Knowledge Distillation
● Speculative Decoding

● Low-Precision
● Sparsity

Techniques that supplement self-attention

Sparsity & pruning

Part 1: Modern Language Models

● LLMs 101

● Make Transformers Efficient

○ Keeping self-attention

○ Supplementing self-attention

○ Modifying/replacing self-attention

Overview

Part 2: Next-Generation Language Models

● State-Space Models

● Neuromorphic Hardware

● MatMul-free LM on Loihi

● What’s next?

Techniques that modify self-attention

● Recurrent Neural Networks

● Linear Attention

Techniques that modify self-attention

● Recurrent Neural Networks

Pros

● Constant memory usage: CHEAP

Cons

● Poor performance/long-range memory

● Poor parallelism

● Poor everything

Techniques that modify self-attention

● Recurrent Neural Networks

Pros

● Constant memory usage: CHEAP

Cons

● Poor performance/long-range memory

● Poor parallelism

● Poor everything

Part 2 will show how to flip the cons.

Shrek saw Taylor with binoculars

Shrek saw Taylor with binoculars

Shrek saw Taylor with binoculars

Shrek saw Taylor with binoculars

Shrek saw Taylor with binoculars

Shrek saw Taylor with binoculars

Shrek saw Taylor with binoculars

Shrek

saw

Taylor

with

binoculars

Shrek saw Taylor with binoculars

Shrek

saw

Taylor

with

binoculars

Shrek saw Taylor with binoculars

Shrek

saw

Taylor

with

binoculars

Memory grows quadratically with
increasing sequence length

Shrek saw Taylor with binoculars

Shrek

saw

Taylor

with

binoculars

Memory grows quadratically with
increasing sequence length

Your brains are not undergoing
neurogenesis with every word I say

Shrek saw Taylor with binoculars

Attention: too much information

RNNs: not enough information

Self-Attention / Recurrent

Channel-MixingToken-Mixing

Residual Stream (Layer) Normalization

General Architecture of LLMs

RNNs as an alternative to self-attention

RNNs as an alternative to self-attention

RNNs as an alternative to self-attention

RNNs as an alternative to self-attention

Eliminating Vector-Matrix Mult Through Time

1 0 0

Vanilla RNN

Eliminating Vector-Matrix Mult Through Time

Real eigenvalues:
static decay

Complex eigenvalues:
Oscillatory decay

1 0 0

Element-wise Linear RNN

Addressing Long-Range Performance in RNNs

Gating Mechanisms Temporal Residual
Connections

E.g., control and forget gates

Addressing Long-Range Performance in RNNs

Gating Mechanisms Temporal Residual
Connections

E.g., control and forget gates

Attention: too much information

RNNs: the right information

An alternative derivation of attention -> RNN
We start from self-attention, and linearize the softmax

Further reading: “Transformers are RNNs” (2020), “Transformers are SSMs” (2024)

attention weights

change for every

new token

→ must store all

previous KV

http://arxiv.org/abs/2006.16236
http://arxiv.org/abs/2405.21060

An alternative derivation of attention -> RNN
We start from self-attention, and linearize the softmax

Further reading: “Transformers are RNNs” (2020), “Transformers are SSMs” (2024)

write softmax as kernel

attention weights

change for every

new token

→ must store all

previous KV

http://arxiv.org/abs/2006.16236
http://arxiv.org/abs/2405.21060

An alternative derivation of attention -> RNN
We start from self-attention, and linearize the softmax

Further reading: “Transformers are RNNs” (2020), “Transformers are SSMs” (2024)

write softmax as kernel

use different kernel
attention weights

change for every

new token

→ must store all

previous KV

http://arxiv.org/abs/2006.16236
http://arxiv.org/abs/2405.21060

An alternative derivation of attention -> RNN
We start from self-attention, and linearize the softmax

Further reading: “Transformers are RNNs” (2020), “Transformers are SSMs” (2024)

write softmax as kernel

use different kernel
attention weights

change for every

new token

→ must store all

previous KV

http://arxiv.org/abs/2006.16236
http://arxiv.org/abs/2405.21060

An alternative derivation of attention -> RNN
We start from self-attention, and linearize the softmax

Further reading: “Transformers are RNNs” (2020), “Transformers are SSMs” (2024)

write softmax as kernel

use different kernel
attention weights

change for every

new token

→ must store all

previous KV

store (1) key_sum,

(2) DxD matrix memory

http://arxiv.org/abs/2006.16236
http://arxiv.org/abs/2405.21060

Part 1: Modern Language Models

● LLMs 101

● Make Transformers Efficient

○ Keeping self-attention

○ Supplementing self-attention

○ Modifying/replacing self-attention

Overview

Part 2: Next-Generation Language Models

● State-Space Models

● Neuromorphic Hardware

● MatMul-free LM on Loihi

● What’s next?

Neuromorphic Computing

GPUs / TPUsCPUs Neuromorphic (e.g., Loihi 2)

Synchronous clock Asynchronous, event-based

Separate memory and processing + high-bandwidth memory

Multi-core sequential processing SIMD parallel, dense MIMD parallel, sparse

Memory-compute integration

Neuromorphic Computing

Slide credit: Philipp Stratmann (Intel Labs)

Neuromorphic Computing

Slide credit: Philipp Stratmann (Intel Labs)

Neuromorphic Computing

Slide credit: Philipp Stratmann (Intel Labs)

Neuromorphic Computing

Slide credit: Philipp Stratmann (Intel Labs)

Neuromorphic Computing

Slide credit: Philipp Stratmann (Intel Labs)

Neuromorphic Computing

Slide credit: Philipp Stratmann (Intel Labs)

Neuromorphic Computing with State Space Models

Part 1: Modern Language Models

● LLMs 101

● Make Transformers Efficient

○ Keeping self-attention

○ Supplementing self-attention

○ Modifying/replacing self-attention

Overview

Part 2: Next-Generation Language Models

● State-Space Models

● Neuromorphic Hardware

● MatMul-free LM on Loihi

● What’s next?

labs 135

Summary: linear RNNs enable low-latency energy-
efficient language modeling on neuromorphic hardware

0

5

10

15

20

25

30

35

40

45

Trhroughput (tok/s)

0

1

2

3

4

5

6

Energy (J/tok)

0

500

1000

1500

2000

2500

3000

Latency (us)

S5 State Space Model Matmul-free LLM

Trained 90% sparse and quantized S5 model shows
35x lower latency and 1209x lower energy on real-

time audio denoising, compared to iso-accuracy
dense model on a Jetson Orin Nano

Loihi Orin Nano H100

2x

35x gain

Implemented on Loihi, enabling the deployment of
370M pre-trained model, showing 1.9x higher
throughput and 13.6x lower energy in batch-1

generation, compared to an H100 and Orin Nano

2.9x

1.9x

1.8x

13.6x

labs 137

S5 State Space Model architecture

• Features:
• Fast training with parallel scan

• Fast inference in recurrent mode

• Strong signal processing capabilities

• Generalize to different inference rates

Linear

BNorm

Linear Linear

Linear

S5

+

GELU

Drop

Linear

𝜎

x

Drop

+

ℎ𝑡+1 = 𝑑𝑖𝑎𝑔 𝐴 ⊙ ℎ𝑡 + 𝐵𝑇𝑢𝑡+1

𝑥𝑡+1 = 𝐶𝑇ℎ𝑡+1 + 𝑑𝑖𝑎𝑔 𝐷 ⊙ 𝑢𝑡+1

× 𝑁layers

[2208.04933] Simplified State Space Layers for Sequence Modeling

https://arxiv.org/abs/2208.04933

labs 138

Dataset

Neuron core processing

Metrics

CPU core processing

N-DNS System

Noisy
Audio

ENCODER DECODER

Audio Quality
Metric

Neuromorphic denoiser

Encoded output

CleanA
udio

Encoded inputAudio input Audio output

Intel N-DNS Challenge

[2303.09503] The Intel Neuromorphic DNS Challenge

https://arxiv.org/abs/2303.09503

labs 139

Architecture & Data

[2310.04564] ReLU Strikes Back: Exploiting Activation Sparsity in Large Language Models
[2304.14082] JaxPruner: A concise library for sparsity research
[1710.01878] To prune, or not to prune: exploring the efficacy of pruning for model compression

Training

Model compression pipeline: unstructured sparsity

Dense FP32 S5

Iterative pruning (90%)
ReLUfication

Sparse FP32 S5

• Weight sparsity
• Iterative Magnitude Pruning gradually updates

the sparsity masks during training to reach a
target sparsity

• It works better than one-shot pruning at high
sparsity levels

• Activation sparsity
• ReLUfication: replaced GELU non-linaerity with

ReLU and introduced additional ReLUs before
key linear layers

• Both interventions are applied with a single fine-
tuning run, starting from a pre-trained dense
model

https://arxiv.org/abs/2310.04564
https://arxiv.org/abs/2310.04564
https://arxiv.org/abs/2310.04564
https://arxiv.org/abs/2304.14082
https://arxiv.org/abs/2304.14082
https://arxiv.org/abs/2304.14082
https://arxiv.org/abs/1710.01878

labs 140

Key Result 1: unstructured sparse models are at the
efficiency-performance Pareto front

Pareto fronts for S5 network audio denoising quality (SI-SNR) as a function of effective compute (left) and memory footprint (right) on the
Intel N-DNS test set. S5 networks with weight and activation sparsity (green) exhibit a large domain of Pareto optimality versus dense S5
networks (orange). Number annotations enumerate increasing S5 dimensionality configurations, from 500 k to 4 M parameters. Da shed

horizontal like marks SI-SNR of Spiking-FullSubNet XL, the previous state-of-the-art model. The horizontal arrows highlight models used for
hardware deployment, the diagonal arrows highlight models of the same width.

2x 37%

labs 141

Architecture & Data

[2406.09477] Q-S5: Towards Quantized State Space Models

Training

Model compression pipeline: quantization

Dense FP32 S5

Iterative pruning (90%)
ReLUfication
Quantization-aware training

Sparse Quantized S5

• Loihi requires fully quantized computation

• Precision: 8bit for weights, 16bit for activations
and diagonal components

• Three steps
• Quantization-aware training (optional)

• Conversion to static quantization

• Fixed-point arithmetic (simulates execution on
the chip)

Static quantization
Fixed-point conversion

Sparse FXP S5

https://arxiv.org/abs/2406.09477
https://arxiv.org/abs/2406.09477
https://arxiv.org/abs/2406.09477

labs 142

Key Result 2: sparse models can be converted to fixed-
point with small accuracy degradation

Impact of quantization interventions on Test SI-SNR and memory footprint, with and without quantization-aware training, for model variant
sparse-6.

QAT significantly reduces the FP to FXP gap Sparse wider models are more resilient to quantization

-8.3%

-6.6%

[WIP] close the gap
between FXP
simulation and Loihi

labs 143

Architecture & Data

Training

Model compression pipeline: hardware acceleration

Dense FP32 S5

Iterative pruning (90%)
ReLUfication
Quantization-aware training

Sparse Quantized S5

Static quantization
Fixed-point conversion

Sparse FXP S5 Intel Loihi 2

Jetson Orin NanoDeploy

Deploy

• Real-time audio de-noising requires each token to
be processed within 8ms

• Parallelization on sequence length not possible!

• We implement the sparse S5 model on Loihi using
the new NxKernel API

• Benchmark latency, energy, and throughput
against a dense FP32 JAX implementation on a
Jetson Orin Nano

• The quantized version didn’t provide a speedup
on the Jetson

labs 144

Key Result 3: hardware results

† Loihi 2 workloads were characterized on an Oheo Gulch system with N3C1-revision Loihi 2 chips running NxCore 2.5.8 and NxKernel 0.2.0 with on-chip IO unthrottled sequencing of inputs. Researchers interested to run S5 on Loihi 2 can gain access to the
software and systems by joining Intel’s Neuromorphic Research Community. ‡ Jetson workloads were characterized on an NVIDIA Jetson Orin Nano 8GB running Jetpack 6.2, CUDA 12.4, JAX 0.4.32, using the MAXN SUPER power mode; energy values are
computed based on the TOT power as reported by jtop 4.3.0. The batch size bmax = 256 was chosen to be the largest that fits into memory. ∗Performance results are based on testing as of January 2025 and may not reflect all publicly available security updates;
results may vary

Power and performance results∗ . The Loihi 2 is running a sparse and quantized S5 model, while the Jetson Orin Nano is running a smaller
dense S5 model that reaches similar test performance. All measurements are averaged over 8 random samples from the test set, each

containing 3750 steps.

35x 1209x 35x

labs 145

Accepted to ICML 2025 and available on arXiv

labs 147

Language modeling on Loihi 2

• Want fully recurrent LLM
• We use an HGRN-based LLM with

ternary weights – 370M params

[2406.02528] Scalable MatMul-free Language Modeling, [2311.04823] Hierarchically Gated Recurrent Neural Network for Sequence Modeling (NeurIPS 2023 Spotlight)

https://arxiv.org/abs/2406.02528
https://arxiv.org/abs/2406.02528
https://arxiv.org/abs/2406.02528
https://arxiv.org/abs/2311.04823
https://arxiv.org/abs/2311.04823
https://arxiv.org/abs/2311.04823

labs 148

Quantization of the model (simulation)

• No accuracy loss
• Only quantizing

element-wise
weights
(matrices are
ternary)

Results from quantization of the 370M MatMul-free language model on GPU. Baseline: optimized models from Zhu et
al. (2024) and Qwen Team (2024). PT: PyTorch-only implementation. Ax / Wx: activations / RMSNorm weights

quantized to x-bit integers. ϵ_rms↑: setting the value for ϵ_rms to 10−3 from previously ϵ_rms = 10−6.
†: difference relative to MatMul-free baseline.

labs 149

Other modifications

• Fixed-point implementation of the
RMSNorm (incl. InvSqrt), Sigmoid
function, etc.

• Mapping the model to Loihi

• Operator fusion where possible

labs 150

Execution modes on Loihi 2

• Pipelined mode: high throughput -
> prefill

• Fall-though mode: low latency
-> autoregressive generation

labs 152

PnP results: batch-1 processing

Throughput and energy efficiency for two transformer-based language models running on the NVIDIA Jetson Orin Nano compared to our MatMul-free LM running on
Intel’s Loihi 2, across different sequence lengths for prefill and generation. The best-performing sequence length for each model and metric is underlined. Metrics for

Loihi 2 are based on preliminary experiments and subject to further performance optimization. Gen: autoregressive generation, Prefill: prefill mode. ∗ Llama
representative model from Montebovi (2024).

Part 1: Modern Language Models

● LLMs 101

● Make Transformers Efficient

○ Keeping self-attention

○ Supplementing self-attention

○ Modifying/replacing self-attention

Overview

Part 2: Next-Generation Language Models

● State-Space Models

● Neuromorphic Hardware

● MatMul-free LM on Loihi

● What’s next?

What’s next?

• Scaling up to larger models – (far) beyond 1B parameters
• Current largest LLM on Loihi 2 is ~500M parameters

• Hardware-model co-design from scratch
• Instead of fitting a model to some hardware, can we design optimal models for given hardware?

• How far can we push the advantages of unstructured sparsity in weights and activations?

• State-of-the-art LLMs
• Recurrent LLMs are limited, the best models might be hybrid attention-recurrent

(e.g. RecurrentGemma, Jamba, Hymba)

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 135: Summary: linear RNNs enable low-latency energy-efficient language modeling on neuromorphic hardware
	Slide 137: S5 State Space Model architecture
	Slide 138: Intel N-DNS Challenge
	Slide 139: Model compression pipeline: unstructured sparsity
	Slide 140: Key Result 1: unstructured sparse models are at the efficiency-performance Pareto front
	Slide 141: Model compression pipeline: quantization
	Slide 142: Key Result 2: sparse models can be converted to fixed-point with small accuracy degradation
	Slide 143: Model compression pipeline: hardware acceleration
	Slide 144: Key Result 3: hardware results
	Slide 145: Accepted to ICML 2025 and available on arXiv
	Slide 147: Language modeling on Loihi 2
	Slide 148: Quantization of the model (simulation)
	Slide 149: Other modifications
	Slide 150: Execution modes on Loihi 2
	Slide 152: PnP results: batch-1 processing
	Slide 154
	Slide 155
	Slide 156

