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Given a 1M context window, there would be 
1012 elements in the matrix.

KV-Cache
Avoids recomputing the entire attention-
matrix by storing prior vectors



- Pre-filling: The model ingests the full prompt once to establish its internal context.

- Auto-regression/decoding: It then predicts new tokens sequentially from the context until the output 

is complete.

Prefill vs. auto-regressive generation

- As sequence length 

increases, attention 

dominates. 
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General Architecture of LLMs
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Flash Attention

Pros:

● Preserves safe and online softmax

● Block-level parallelism

Cons:

● Nothing.

Fusing kernels = minimizing memory access
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Low Rank Approximation

Pros

● KV Cache Compression

● Reduced FLOPs for longer sequences

Cons

● Training instability risk

● Poorer long-range arena performance
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Sparse Attention

Pros

● Sparse factorizations of the attention 

matrix

● Huge speed up

● DeepSeek uses a form of structured 

sparsity during training time, as does 

Longformer, Big Bird, Reformer, 

Linformer, etc.

Cons

● Sparsity must be structured

● KV cache (typically) remains
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Multi/Group Query Attention

● Reduced KV Cache size

● Faster Attention Computation

● Lower Memory Bandwidth

● Llama-2, Mistral-7B
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Mixture of Experts

Pros

● Less FLOPs for larger models

● It’s everywhere. (ChatGPT, DeepSeek, 

Mixtral)

Cons

● Non-uniform experts (need probabilistic 

sampling to fix this)

Note: this is just another form of structured 

sparsity. “Experts” is perhaps misleading -

representations tend to still be distributed.



Mixture of Experts: fine-grained

Pros

● Less FLOPs for larger models

● Performance scales better with finer 

granularity -> more, smaller experts

Cons

● Inefficient on GPUs/TPUs (fine-grained 

random memory access)

He, 2024, Mixture of a Million Experts
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Higher-Level Optimizations
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Knowledge Distillation

Pros

● Amongst the best ways to do model 
compression

● DeepSeek distilled ChatGPT knowledge!

Cons
● …Thus violating ChatGPTs terms of 

service

● But does ChatGPT have the right to 

“protect” a model trained on 
proprietary data that is not theirs?

● You also still need to have a large model 
trained.
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Speculative Decoding

● Increased throughput by multi-sampling the output

● Used widely in practice
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Low-Precision Quantization

Pros

● Less memory

Cons

● Worse performance

But how much worse performance?

● Weights: very tolerant to low-precision

● Activations: less tolerant to low-

precision

● Normalization ops: they hate low-

precision

BitNet, Microsoft
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Sparsity & pruning
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Techniques that modify self-attention

● Recurrent Neural Networks

● Linear Attention 
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Techniques that modify self-attention

● Recurrent Neural Networks

Pros

● Constant memory usage: CHEAP

Cons

● Poor performance/long-range memory

● Poor parallelism

● Poor everything

Part 2 will show how to flip the cons.
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increasing sequence length



Shrek saw Taylor with binoculars

Shrek 

saw 

Taylor 

with 

binoculars

Memory grows quadratically with 
increasing sequence length

Your brains are not undergoing 
neurogenesis with every word I say



Shrek saw Taylor with binoculars



Attention: too much information

RNNs: not enough information



Self-Attention / Recurrent

Channel-MixingToken-Mixing

Residual Stream (Layer) Normalization

General Architecture of LLMs



RNNs as an alternative to self-attention



RNNs as an alternative to self-attention



RNNs as an alternative to self-attention



RNNs as an alternative to self-attention



Eliminating Vector-Matrix Mult Through Time

1 0 0

Vanilla RNN



Eliminating Vector-Matrix Mult Through Time

Real eigenvalues: 
static decay

Complex eigenvalues: 
Oscillatory decay

1 0 0

Element-wise Linear RNN



Addressing Long-Range Performance in RNNs

Gating Mechanisms Temporal Residual 
Connections

E.g., control and forget gates



Addressing Long-Range Performance in RNNs

Gating Mechanisms Temporal Residual 
Connections

E.g., control and forget gates

Attention: too much information

RNNs: the right information



An alternative derivation of attention -> RNN
We start from self-attention, and linearize the softmax

Further reading: “Transformers are RNNs” (2020), “Transformers are SSMs” (2024)

attention weights

change for every 

new token

→ must store all 

previous KV

http://arxiv.org/abs/2006.16236
http://arxiv.org/abs/2405.21060
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An alternative derivation of attention -> RNN
We start from self-attention, and linearize the softmax

Further reading: “Transformers are RNNs” (2020), “Transformers are SSMs” (2024)

write softmax as kernel

use different kernel
attention weights

change for every 

new token

→ must store all 

previous KV

store (1) key_sum,

(2) DxD matrix memory

http://arxiv.org/abs/2006.16236
http://arxiv.org/abs/2405.21060
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Neuromorphic Computing

GPUs / TPUsCPUs Neuromorphic (e.g., Loihi 2)

Synchronous clock Asynchronous, event-based

Separate memory and processing + high-bandwidth memory

Multi-core sequential processing SIMD parallel, dense MIMD parallel, sparse

Memory-compute integration



Neuromorphic Computing

Slide credit: Philipp Stratmann (Intel Labs)
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Slide credit: Philipp Stratmann (Intel Labs)



Neuromorphic Computing

Slide credit: Philipp Stratmann (Intel Labs)



Neuromorphic Computing with State Space Models
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Summary: linear RNNs enable low-latency energy-
efficient language modeling on neuromorphic hardware
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S5 State Space Model Matmul-free LLM

Trained 90% sparse and quantized S5 model shows 
35x lower latency and 1209x lower energy on real-

time audio denoising, compared to iso-accuracy 
dense model on a Jetson Orin Nano

Loihi Orin Nano H100

2x

35x gain

Implemented on Loihi, enabling the deployment of 
370M pre-trained model, showing 1.9x higher 
throughput and 13.6x lower energy in batch-1 

generation, compared to an H100 and Orin Nano

2.9x

1.9x

1.8x

13.6x
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S5 State Space Model architecture

• Features:
• Fast training with parallel scan

• Fast inference in recurrent mode

• Strong signal processing capabilities

• Generalize to different inference rates

Linear

BNorm

Linear Linear

Linear

S5

+

GELU

Drop

Linear

𝜎

x

Drop

+

ℎ𝑡+1 = 𝑑𝑖𝑎𝑔 𝐴 ⊙ ℎ𝑡 + 𝐵𝑇𝑢𝑡+1

𝑥𝑡+1 = 𝐶𝑇ℎ𝑡+1 + 𝑑𝑖𝑎𝑔 𝐷 ⊙ 𝑢𝑡+1

× 𝑁layers

[2208.04933] Simplified State Space Layers for Sequence Modeling

https://arxiv.org/abs/2208.04933
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Dataset

Neuron core processing

Metrics

CPU core processing

N-DNS System

Noisy
Audio

ENCODER DECODER

Audio Quality 
Metric

Neuromorphic denoiser

Encoded output

CleanA
udio

Encoded inputAudio input Audio output

Intel N-DNS Challenge

[2303.09503] The Intel Neuromorphic DNS Challenge

https://arxiv.org/abs/2303.09503
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Architecture & Data

[2310.04564] ReLU Strikes Back: Exploiting Activation Sparsity in Large Language Models
[2304.14082] JaxPruner: A concise library for sparsity research
[1710.01878] To prune, or not to prune: exploring the efficacy of pruning for model compression

Training

Model compression pipeline: unstructured sparsity

Dense FP32 S5

Iterative pruning (90%)
ReLUfication

Sparse FP32 S5

• Weight sparsity
• Iterative Magnitude Pruning gradually updates 

the sparsity masks during training to reach a 
target sparsity

• It works better than one-shot pruning at high 
sparsity levels

• Activation sparsity
• ReLUfication: replaced GELU non-linaerity with 

ReLU and introduced additional ReLUs before 
key linear layers

• Both interventions are applied with a single fine-
tuning run, starting from a pre-trained dense 
model

https://arxiv.org/abs/2310.04564
https://arxiv.org/abs/2310.04564
https://arxiv.org/abs/2310.04564
https://arxiv.org/abs/2304.14082
https://arxiv.org/abs/2304.14082
https://arxiv.org/abs/2304.14082
https://arxiv.org/abs/1710.01878
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Key Result 1: unstructured sparse models are at the 
efficiency-performance Pareto front

Pareto fronts for S5 network audio denoising quality (SI-SNR) as a function of effective compute (left) and memory footprint (right) on the 
Intel N-DNS test set. S5 networks with weight and activation sparsity (green) exhibit a large domain of Pareto optimality versus dense S5 
networks (orange). Number annotations enumerate increasing S5 dimensionality configurations, from 500 k to 4 M parameters. Da shed 

horizontal like marks SI-SNR of Spiking-FullSubNet XL, the previous state-of-the-art model. The horizontal arrows highlight models used for 
hardware deployment, the diagonal arrows highlight models of the same width.

2x 37%
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Architecture & Data

[2406.09477] Q-S5: Towards Quantized State Space Models

Training

Model compression pipeline: quantization

Dense FP32 S5

Iterative pruning (90%)
ReLUfication
Quantization-aware training

Sparse Quantized S5

• Loihi requires fully quantized computation

• Precision: 8bit for weights, 16bit for activations 
and diagonal components

• Three steps
• Quantization-aware training (optional)

• Conversion to static quantization

• Fixed-point arithmetic (simulates execution on 
the chip)

Static quantization
Fixed-point conversion

Sparse FXP S5

https://arxiv.org/abs/2406.09477
https://arxiv.org/abs/2406.09477
https://arxiv.org/abs/2406.09477
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Key Result 2: sparse models can be converted to fixed-
point with small accuracy degradation

Impact of quantization interventions on Test SI-SNR and memory footprint, with and without quantization-aware training, for model variant 
sparse-6. 

QAT significantly reduces the FP to FXP gap Sparse wider models are more resilient to quantization

-8.3%

-6.6%

[WIP] close the gap 
between FXP 
simulation and Loihi
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Architecture & Data

Training

Model compression pipeline: hardware acceleration

Dense FP32 S5

Iterative pruning (90%)
ReLUfication
Quantization-aware training

Sparse Quantized S5

Static quantization
Fixed-point conversion

Sparse FXP S5 Intel Loihi 2

Jetson Orin NanoDeploy

Deploy

• Real-time audio de-noising requires each token to 
be processed within 8ms

• Parallelization on sequence length not possible!

• We implement the sparse S5 model on Loihi using 
the new NxKernel API

• Benchmark latency, energy, and throughput 
against a dense FP32 JAX implementation on a 
Jetson Orin Nano

• The quantized version didn’t provide a speedup 
on the Jetson
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Key Result 3: hardware results

† Loihi 2 workloads were characterized on an Oheo Gulch system with N3C1-revision Loihi 2 chips running NxCore 2.5.8 and NxKernel 0.2.0 with on-chip IO unthrottled sequencing of inputs. Researchers interested to run S5 on Loihi 2 can gain access to the 
software and systems by joining Intel’s Neuromorphic Research Community. ‡ Jetson workloads were characterized on an NVIDIA Jetson Orin Nano 8GB running Jetpack 6.2, CUDA 12.4, JAX 0.4.32, using the MAXN SUPER power mode; energy values are 
computed based on the TOT power as reported by jtop 4.3.0. The batch size bmax = 256 was chosen to be the largest that fits into memory. ∗Performance results are based on testing as of January 2025 and may not reflect all publicly available security updates; 
results may vary

Power and performance results∗ . The Loihi 2 is running a sparse and quantized S5 model, while the Jetson Orin Nano is running a smaller 
dense S5 model that reaches similar test performance. All measurements are averaged over 8 random samples from the test set, each 

containing 3750 steps. 

35x 1209x 35x
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Accepted to ICML 2025 and available on arXiv
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Language modeling on Loihi 2

• Want fully recurrent LLM
• We use an HGRN-based LLM with 

ternary weights – 370M params

[2406.02528] Scalable MatMul-free Language Modeling, [2311.04823] Hierarchically Gated Recurrent Neural Network for Sequence Modeling (NeurIPS 2023 Spotlight)

https://arxiv.org/abs/2406.02528
https://arxiv.org/abs/2406.02528
https://arxiv.org/abs/2406.02528
https://arxiv.org/abs/2311.04823
https://arxiv.org/abs/2311.04823
https://arxiv.org/abs/2311.04823
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Quantization of the model (simulation)

• No accuracy loss
• Only quantizing

element-wise
weights 
(matrices are 
ternary)

Results from quantization of the 370M MatMul-free language model on GPU. Baseline: optimized models from Zhu et 
al. (2024) and Qwen Team (2024). PT: PyTorch-only implementation. Ax / Wx: activations / RMSNorm weights 

quantized to x-bit integers. ϵ_rms↑: setting the value for ϵ_rms to 10−3 from previously ϵ_rms = 10−6. 
†: difference relative to MatMul-free baseline.
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Other modifications

• Fixed-point implementation of the 
RMSNorm (incl. InvSqrt), Sigmoid 
function, etc.

• Mapping the model to Loihi

• Operator fusion where possible
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Execution modes on Loihi 2

• Pipelined mode: high throughput -
> prefill

• Fall-though mode: low latency 
-> autoregressive generation
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PnP results: batch-1 processing

Throughput and energy efficiency for two transformer-based language models running on the NVIDIA Jetson Orin Nano compared to our MatMul-free LM running on 
Intel’s Loihi 2, across different sequence lengths for prefill and generation. The best-performing sequence length for each model and metric is underlined. Metrics for 

Loihi 2 are based on preliminary experiments and subject to further performance optimization. Gen: autoregressive generation, Prefill: prefill mode. ∗ Llama 
representative model from Montebovi (2024).
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What’s next?

• Scaling up to larger models – (far) beyond 1B parameters
• Current largest LLM on Loihi 2 is ~500M parameters

• Hardware-model co-design from scratch
• Instead of fitting a model to some hardware, can we design optimal models for given hardware?

• How far can we push the advantages of unstructured sparsity in weights and activations? 

• State-of-the-art LLMs
• Recurrent LLMs are limited, the best models might be hybrid attention-recurrent 

(e.g. RecurrentGemma, Jamba, Hymba)



Thank you
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